El trabajo dignifica

Algebra I: Ejercicios Resueltos de Lógica

Profesor Ricardo Santander Baeza

2017

1. Dada la proposición lógica

$$\sim (p \Longrightarrow q) \Longrightarrow (\sim p \Longrightarrow \sim q) \qquad (*)$$

1.1 Muestre que (*) es una Tautología usando una tabla de verdad.

1. Dada la proposición lógica

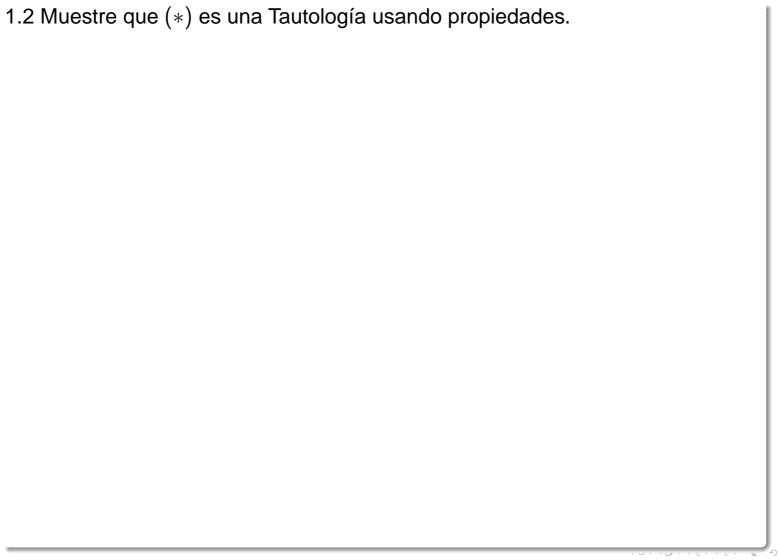
$$\sim (p \Longrightarrow q) \Longrightarrow (\sim p \Longrightarrow \sim q) \qquad (*)$$

1.1 Muestre que (*) es una Tautología usando una tabla de verdad.

Para mostrar que (*) es una Tautología usando una tabla de verdad, recurrimos al formato usual. e.e.

p	q	\sim p	$\sim q$	$p \Longrightarrow q$	$\sim (ho \Longrightarrow q)$	\Longrightarrow	$\sim ho \Longrightarrow \sim q$
1	1	0	0	1	0	1	1
1	0	0	1	0	1	1	1
0	1	1	0	1	0	1	0
0	0	1	1	1	0	1	1

Luego, (*) es una Tautología



1.2 Muestre que (*) es una Tautología usando propiedades. En efecto

$$\sim (p \Longrightarrow q) \Longrightarrow (\sim p \Longrightarrow \sim q) \equiv \sim (\sim p \lor q) \Longrightarrow (\sim (\sim p) \lor \sim q)$$

$$\equiv (\sim (\sim p) \land \sim q) \Longrightarrow (p \lor \sim q)$$

$$\equiv (p \land \sim q) \Longrightarrow (p \lor \sim q)$$

$$\equiv \sim (p \land \sim q) \lor (p \lor \sim q)$$

$$\equiv (\sim p \lor q) \lor (p \lor \sim q)$$

$$\equiv \sim p \lor q \lor p \lor \sim q$$

$$\equiv r \lor r$$

$$\equiv r$$

$$(p \Longrightarrow [q \lor r]) \Longleftrightarrow (\sim [q \lor r] \Longrightarrow \sim p) \quad (*)$$

$$(p \Longrightarrow [q \lor r]) \Longleftrightarrow (\sim [q \lor r] \Longrightarrow \sim p) \quad (*)$$

Si en (*) hacemos $s = q \lor r$ entonces reducimos el problema a mostrar que:

$$p \Longrightarrow s \Longleftrightarrow \sim s \Longrightarrow \sim p \qquad (**)$$

Así que ahora, aplicamos nuestro formato a (**) y obtenemos la siguiente tabla:

p	S	\sim p	\sim S	$p \Longrightarrow s$	\iff	\sim s $\Longrightarrow \sim$ p					
1	1	0	0	1	1	1					
1	0	0	1	0	1	0					
0	1	1	0	1	1	1					
0	0	1	1	0 1 1	1	1					
•	•	•	•		↑ _ _	· 					

Luego (*) es una Tautología.

$$(p \Longrightarrow [q \lor r]) \Longleftrightarrow (\sim [q \lor r] \Longrightarrow \sim p) \quad (*)$$

Si en (*) hacemos $s = q \lor r$ entonces reducimos el problema a mostrar que:

$$p \Longrightarrow s \Longleftrightarrow \sim s \Longrightarrow \sim p \qquad (**)$$

Así que ahora, aplicamos nuestro formato a (**) y obtenemos la siguiente tabla:

p	S	\sim p	\sim s	$p \Longrightarrow s$	\iff	\sim s $\Longrightarrow \sim p$
1	1	0	0	1	1	1
1	0	0	1	0	1	0
0	1	1	0	1	1	1
0	0	1	1	1 1	1	1
				t	11_	
				-	τ^{-}	

Luego (*) es una Tautología.

Ahora usemos propiedades para mostrar (*) es una tautología

$$(p \Longrightarrow [q \lor r]) \Longleftrightarrow (\sim [q \lor r] \Longrightarrow \sim p) \quad (*)$$

Si en (*) hacemos $s = q \lor r$ entonces reducimos el problema a mostrar que:

$$p \Longrightarrow s \Longleftrightarrow \sim s \Longrightarrow \sim p \qquad (**)$$

Así que ahora, aplicamos nuestro formato a (**) y obtenemos la siguiente tabla:

p	S	\sim p	\sim S	$p \Longrightarrow s$	\iff	\sim s $\Longrightarrow \sim$ p
1	1	0	0	1	1	1
1	0	0	1	0	1	0
0	1	1	0	1	1	1
0	0	1 1	1	1	1	1
•	•	•	•	<u> </u>		·
					$ \tau$	

Luego (*) es una Tautología.

Ahora usemos propiedades para mostrar (*) es una tautología

$$(
ho \Longrightarrow [q \lor r]) \iff (\sim p \lor [q \lor r]) \ \iff ([q \lor r] \lor \sim p) \ \iff (\sim (\sim [q \lor r]) \lor \sim p) \ \iff (\sim [q \lor r] \Longrightarrow \sim p)$$

3. Si *p* y *q* son proposiciones demuestre usando una tabla de verdad que:

$$(
ho\Longrightarrow q)\iff [(
ho\land\sim q)\Longrightarrow (r\land\sim r)]$$
 Es una Tautología

3. Si *p* y *q* son proposiciones demuestre usando una tabla de verdad que:

$$(p\Longrightarrow q)\iff [(p\land\sim q)\Longrightarrow (r\land\sim r)]$$
 Es una Tautología

Construyamos la tabla de verdad.

p	q	r	$\sim q$	$(p \Longrightarrow q)$	\iff	$ ho \wedge \sim q $	\Longrightarrow	$ r \wedge \sim r $
1	1	1	0	1	1	0	1	0
1	1	0	0	1	1	0	1	0
1	0	1	1	0	1	1	0	0
1	0	0	1	0	1	1	0	0
0	1	1	0	1	1	0	1	0
0	1	0	0	1	1	0	1	0
0	0	1	1	1	1	0	1	0
0	0	0	1	1	1	0	1	0

Luego, la proposición es una tautología.

$$\{q \land \sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]\} \Longleftrightarrow p \land q \qquad (*)$$

♦ Demuestre usando Tablas de verdad que la proposición (*) es una Tautología.

$$\{q \land \sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]\} \Longleftrightarrow p \land q \quad (*)$$

♦ Demuestre usando Tablas de verdad que la proposición (*) es una Tautología.

p	\wedge	q	\Longrightarrow	(∼ <i>p</i>	\vee	$\sim q)$	$\sim \left[(p \wedge q) \Longrightarrow (\sim p \lor \sim q) ight]$	$q \wedge \sim [(p \wedge q) \Longrightarrow (\sim p \lor \sim q)]$	\iff	$p \wedge q$
1	1	1	0	0	0	0	1	1	1	1
1	0	0	1	0	1	1	0	0	1	0
0	0	1	1	1	1	0	0	0	1	0
0	0	0	1	1	1	1	0	0	1	0

$$\{q \land \sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]\} \Longleftrightarrow p \land q \quad (*)$$

♦ Demuestre usando Tablas de verdad que la proposición (*) es una Tautología.

p	\wedge	q	\Longrightarrow	$(\sim p$	\vee	$\sim q)$	$\sim [(p \wedge q) \Longrightarrow (\sim p \lor \sim q)]$	$q \wedge \sim [(p \wedge q) \Longrightarrow (\sim p \lor \sim q)]$	\iff	$p \wedge q$
1	1	1	0	0	0	0	1	1	1	1
1	0	0	1	0	1	1	0	0	1	0
0	0	1	1	1	1	0	0	0	1	0
0	0	0	1	1	1	1	0	0	1	0

♦ Demuestre usando propiedades que la proposición (*) es una tautología.

$$\{q \land \sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]\} \Longleftrightarrow p \land q \qquad (*)$$

♦ Demuestre usando Tablas de verdad que la proposición (*) es una Tautología.

p	\wedge	q	\implies	$(\sim p$	\vee	\sim $q)$	$\sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]$	$q \wedge \sim [(p \wedge q) \Longrightarrow (\sim p \lor \sim q)]$	\iff	$p \wedge q$
1	1	1	0	0	0	0	1	1	1	1
1	0	0	1	0	1	1	0	0	1	0
0	0	1	1	1	1	0	0	0	1	0
0	0	0	1	1	1	1	0	0	1	0

♦ Demuestre usando propiedades que la proposición (*) es una tautología.

$$\{q \land \sim [(p \land q) \Longrightarrow (\sim p \lor \sim q)]\} \iff q \land \sim [(p \land q) \Longrightarrow \sim (p \land q)] \qquad \text{(De Morgan)}$$

$$\iff q \land \sim [\sim (p \land q) \lor \sim (p \land q)] \qquad (a \Longrightarrow b \Longleftrightarrow \sim a \lor b)$$

$$\iff q \land \sim [\sim (p \land q)] \qquad (p \lor p \Longleftrightarrow p)$$

$$\iff q \land (p \land q) \qquad (\sim \sim p \Longleftrightarrow p)$$

$$\iff (q \land q) \land p \qquad (p \land q \Longleftrightarrow q \land p)$$

$$\iff q \land p$$

5. Determine usando propiedades que la siguiente proposición

$$[(\sim p \lor q) \land (r \Longrightarrow s) \land \sim (q \land s)] \Longrightarrow (p \Longrightarrow \sim r)$$

Es una tautología.

5. Determine usando propiedades que la siguiente proposición

$$[(\sim p \lor q) \land (r \Longrightarrow s) \land \sim (q \land s)] \Longrightarrow (p \Longrightarrow \sim r)$$

Es una tautología.

$$(\sim p \lor q) \land (r \Longrightarrow s) \land \sim (q \land s) \iff (p \Longrightarrow q) \land (r \Longrightarrow s) \land (\sim q \lor \sim s)$$

$$\iff (p \Longrightarrow q) \land (r \Longrightarrow s) \land (q \Longrightarrow \sim s)$$

$$\iff (p \Longrightarrow q) \land (q \Longrightarrow \sim s) \land (r \Longrightarrow s)$$

$$\implies (p \Longrightarrow \sim s) \land (r \Longrightarrow s)$$

$$\implies (p \Longrightarrow \sim s) \land (\sim s \Longrightarrow \sim r)$$

$$\implies p \Longrightarrow \sim r$$

6. Demuestre justificando paso a paso, (usando propiedades no tablas de verdad), la siguiente proposición es verdadera:

$$\sim [\{(\sim q \Longrightarrow \sim p) \land (r \Longrightarrow s)\} \land (\sim q \lor \sim s)] \Longrightarrow (p \land r)$$

6. Demuestre justificando paso a paso, (usando propiedades no tablas de verdad), la siguiente proposición es verdadera:

$$\sim [\{(\sim q \Longrightarrow \sim p) \land (r \Longrightarrow s)\} \land (\sim q \lor \sim s)] \Longrightarrow (p \land r)$$

Si llamamos $w = [\{(\sim q \Longrightarrow \sim p) \land (r \Longrightarrow s)\} \land (\sim q \lor \sim s)]$ entonces

 $\implies r \land p$

 $: [\sim (\sim x) = x]$

7. Si se define el conectivo lógico * como:

p*q es Falsa sólo si p y q son verdaderas, caso contrario p*q es Verdadera entonces determine el valor de verdad de la siguiente proposición:

$$[(\rho \Longrightarrow q) \lor q] \Longleftrightarrow [(\rho \land \sim q) * \sim q] \tag{1}$$

7. Si se define el conectivo lógico * como:

p*q es Falsa sólo si p y q son verdaderas, caso contrario p*q es Verdadera entonces determine el valor de verdad de la siguiente proposición:

$$[(\rho \Longrightarrow q) \lor q] \Longleftrightarrow [(\rho \land \sim q) * \sim q] \tag{1}$$

Como

$$[(p \Longrightarrow q) \lor q] \equiv (\sim p \lor q)$$

entonces la proposición (1) queda :

$$[(p \Longrightarrow q) \lor q] \Longleftrightarrow [(p \land \sim q) * \sim q] \equiv (\sim p \lor q) \Longleftrightarrow [(p \land \sim q) * \sim q]$$
 (2)

Si hacemos $m = \sim p \lor q$ entonces $\sim m = p \land \sim q$ y la proposición (2) queda de la forma:

$$m \Leftrightarrow \sim m* \sim q$$
 (3)

Y conforme a la definición de la proposición * debemos estudiar los siguientes casos:

▶ Si m es verdadera entonces $\sim m$ es falsa y por tanto $\sim m*\sim q$ es verdadera, y se tiene:

$$egin{array}{cccc} \emph{m} &\Leftrightarrow & \sim \emph{m}* \sim \emph{q} \\ \emph{V} &\Leftrightarrow & \emph{V} \\ \emph{V} & \end{array}$$

- ▶ Si m es falsa entonces $\sim m$ es verdadera y se deben considerar dos casos:
 - si $\sim q$ es verdadera entonces $\sim m*\sim q$ es falsa,y se tiene:

$$egin{array}{cccc} \emph{m} &\Leftrightarrow & \sim \emph{m}* \sim \emph{q} \\ \emph{F} &\Leftrightarrow & \emph{F} \\ \emph{V} \end{array}$$

• Si $\sim q$ es falsa entonces q es verdadera y entonces m= no es falsa $\sim m* \sim q$ es verdadera, y se tiene:

$$egin{array}{lll} m{m} &\Leftrightarrow & \sim m{m}* \sim m{q} \ m{F} &\Leftrightarrow & m{F} \ m{V} \end{array}$$

Y de los tres casos anteriores se concluye que la proposición dada es una tautología.

8. Demuestre que la proposición

$$[((\sim p \lor q) \Longrightarrow r) \land (r \Longrightarrow (s \lor t)) \land (\sim s \land \sim u) \land (\sim u \Longrightarrow \sim t)] \Longrightarrow p$$

Es una tautología

8. Demuestre que la proposición

$$[((\sim p \lor q) \Longrightarrow r) \land (r \Longrightarrow (s \lor t)) \land (\sim s \land \sim u) \land (\sim u \Longrightarrow \sim t)] \Longrightarrow p$$

Es una tautología

Sea
$$X = [((\sim p \lor q) \Longrightarrow r) \land (r \Longrightarrow (s \lor t)) \land (\sim s \land \sim u) \land (\sim u \Longrightarrow \sim t)]$$

Entonces se tiene:

$$X \implies \{(\sim p \lor q) \Longrightarrow (s \lor t)\} \land (\sim s \land \sim u) \land (t \Longrightarrow u)$$

$$\implies \{(\sim p \lor q) \Longrightarrow (s \lor t)\} \land \sim s \land (\sim u \land (t \Longrightarrow u))$$

$$\implies \{(\sim p \lor q) \Longrightarrow (s \lor t)\} \land \sim s \land \sim t$$

$$\implies (\sim p \lor q) \Longrightarrow (s \lor t) \land \sim (s \lor t)$$

$$\implies \sim (\sim p \lor q)$$

$$\implies p \land \sim q$$

$$\implies p$$

Luego como X implica p entonces se tiene que :

 $X \Longrightarrow p$ es una tautología